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Implementation of an Evolving Fuzzy Model
(eFuMo) in a Monitoring System for

a Waste-Water Treatment Process
Dejan Dovžan, Vito Logar, and Igor Škrjanc

Abstract—Increasing demands on effluent quality and loads call
for an improved control, monitoring, and fault detection of waste-
water treatment plants (WWTPs). Improved control and optimiza-
tion of WWTP lead to increased pollutant removal, a reduced need
for chemicals as well as energy savings. An important step toward
the optimal functioning of a WWTP is to minimize the influence of
sensor faults on the control quality. To achieve this, a fault-detection
system should be implemented. In this paper, the idea of using an
evolving method as a base for the fault-detection/monitoring system
is tested. The system is based on the evolving fuzzy model method.
This method allows us to model the nonlinear relations between
the variables with the Takagi–Sugeno fuzzy model. The method
uses basic evolving mechanisms to add and remove clusters and
the adaptation mechanism to adapt the clusters’ and local models’
parameters. The proposed fault-detection system is tested on mea-
sured data from a real WWTP. The results indicate the potential
improvement of the WWTP’s control during a sensor malfunction.

Index Terms—Adaptation of fuzzy model, evolving fuzzy model
(eFuMo), evolving mechanisms, fault detection, soft-sensor, waste-
water treatment plant (WWTP).

I. INTRODUCTION

INCREASING demands on effluent quality and increasing
loads call for an improved control, monitoring, and fault

detection of waste-water treatment plants (WWTPs). Applied
research in automatic control is one of the important tools in
achieving an overall high performance of the plant. The im-
proved control and optimization of a WWTP can lead to an in-
creased pollutant removal, a reduced need for chemicals as well
as energy savings. One step toward an optimal WWTP control
is the implementation of a monitoring system [1]. An efficient
monitoring system should be able to detect the fault, isolate it,
and manage it in such a way that the quality of the control is not
compromised [2]. In [3], a model-predictive-control algorithm
was designed and tested on a WWTP. From the measured re-
sponses, it clear that the quality of the control is compromised
by the failure of a sensor. It was pointed out in the paper that the
sensor’s failure caused an undesired peak in the process output.
To improve the control during the sensor failures, a monitor-
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ing system should be implemented, which is able to detect the
sensor’s failure and estimate its output during the failure period.

Over the years, the monitoring system design for WWTPs has
received a lot of attention. They usually implement a soft sensor
for estimating the variables that cannot be measured online. In
[4], a soft sensor for estimating the phosphor concentration is
proposed. The design is based on different approaches, such as
partial least squares, multiple linear regression, and principal
component regression. In [5]–[9], a soft sensor for estimating
the oxygen-dissolving rate and the respiration of microorgan-
isms is proposed. The two variables are estimated from the
dissolved oxygen in the aerobic tank and the air flow. In the
papers, different algorithms are proposed: modified Luenberg’s
algorithm [5], generalized damped least squares, [6], support
vector machine [7], and Kalman filter [8], [9].

In [10]–[12], the online estimation of ammonia and nitrogen
oxide is studied. A soft sensor is designed based on the online
dissolved oxygen, pH, and oxidation redox potential measure-
ments. In [10], a soft sensor is based on GMDH-type polynomial
neural networks. To improve the estimation accuracy, they pro-
pose an additional fuzzy compensator based on empirical rules.
In [11], a soft sensor is based on the Kalman filter. In [12], a
hybrid neural network [neural network in combination with a
principal component analysis (PCA)] is proposed for estimating
the Kjeldahlov nitrogen concentration.

In [13], a monitoring system for a WWTP is presented.
They use soft sensors for estimating the unmeasurable vari-
ables (chemical oxygen demand, biochemical oxygen demand,
and nitrogen and phosphate concentration) and for the fault de-
tection of the online measurable variables (temperature, flow,
redox potential, pH, conductivity, and the opacity of the waste
water in the tanks). The models used in soft sensors are built
using neural networks with the ARX local model structure. The
fault detection of the online measurable variables is based on
the adaptive PCA models. The adaptation of the PCA model
is achieved by implementing the sliding-window concept. For
each online sensor, a sensor-validity index is calculated. If the
index threshold is breached, the alarm is raised, and the sensor
output is estimated with an appropriate model. An interval ob-
server for monitoring the variables of the WWTP is proposed
in [14].

In [1], [15] and [16], a soft sensor based on PCA for monitor-
ing the online measurements is proposed. The abnormal behav-
ior is detected by T 2 and Q statistics. In [15], the pH, dissolved
oxygen level, and oxidation reduction potential are monitored.
In [14], the ammonia and NOx are monitored.
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A more detailed overview of the state-of-the-art soft sensors
for WWTPs can be found in [17]. More general information
about soft sensors and fault-detection approaches can be found
in [18] and [19].

In this paper, we propose a monitoring system for a WWTP
based on a novel evolving fuzzy model (eFuMo) method. Since
the WWTP is a nonlinear and time-varying process, the theo-
retical models are hard to tune and may not produce accurate
results [14]. It can be seen in [3] that simplified theoretical
models produce approximations that differ substantially from
the measured values. Therefore, we propose to use an eFuMo
method for building the models used in the monitoring system.
The method utilizes the Takagi–Sugeno (T–S) fuzzy model to
describe the relations between the model input and the output
variables. It builds the model online by adding new or removing
old local models, if necessary, and adapting the parameters of the
local models and clusters. The advantage of online fuzzy model
identification is that the model is able to adapt to the current
process behavior. This is useful, especially for processes with
changing dynamics, such as WWTPs. The proposed system is
not meant to replace physical sensors; it can only be used for a
short time prediction of the sensor’s output, when the sensor is
offline or faulty.

Depending on the learning abilities, the online fuzzy-
identification methods can be categorized into: adaptive meth-
ods (e.g., ANFIS [20], GANFIS [21], rFCM [22], rGK [23]),
where the initial structure of the fuzzy model must be given. The
number of space partitions/clusters does not change over time,
only the parameters of the membership functions and local mod-
els are adapted; incremental methods (e.g., RAN [24], SONFIN
[25], SCFNN [26], NeuroFAST [27], DENFIS [28], eTS [29],
FLEXFIS [30], PANFIS [31]), where only adding mechanisms
are implemented; evolving methods (e.g., SAFIS [32], SOFNN
[33], GAP-RBF [34], EFuNN [35], [36], D-FNN [37], GD-FNN
[38], ENFM [39], eTS+ [40], ENFM [39], FLEXFIS++ [41],
AHLTNM [42], SOFMLS [43]) which, besides an adding mech-
anism, implement removing and some of them also merging and
splitting mechanisms. More on evolving methods can be found
in [44] and [45], where concepts and open issues regarding these
methods are presented.

This paper is organized in the following order. First, the prob-
lem is defined, then follows the description of the methodology,
where the used learning method is briefly described and the idea
of the monitoring system is given. In Section IV, the results are
given, accompanied with some comments. At the end, some
conclusions are drawn.

II. PROBLEM STATEMENT

The monitoring system proposed in this paper was designed
and tested on measured data from a pilot WWTP, shown in
Fig. 1 and an operational WWTP stationed near Ljubljana. The
pilot plant consists of two anoxic reactors, two aerobic reactors,
and an additional reactor, where the water is collected before
returning as an internal recycle or passing down to the settler.
To ensure the homogeneity, the waste water is mixed by mixers
in the anoxic reactors and by air flow in the aerobic reactors.

Fig. 1. Scheme of the MBBR.

The measurements made available to us were flow rate and
ammonia concentration at the influent, air-flow rate in the aera-
tion system, oxygen concentration in the first and second aerobic
reactors, ammonia concentration in the last aerobic reactor, and
waste-water temperature at the effluent. From the operational
WWTP, we obtained the measurements of flow rate, tempera-
ture, total organic carbon (TOC) concentration, total nitrogen
(TN) concentration, suspended solids, nitrates and ammonia
concentration at the effluent, and TN, TOC, and ammonia con-
centration at the influent. The data for both WWTPs were sam-
pled with a sampling time of 20 s. The measurement of the
TN and TOC were refreshed every 5 min by an inline analyzer.
The influent to the plant is the waste water after a mechanical
primary.

The purpose of the control is to keep the effluent ammonia
concentration in a specified bound. The control scheme consists
of three controllers. The Model predictive controller controls
the ammonia by changing the oxygen-concentration set point
of the last aerobic reactor. The inputs to the controller are the
specified set point of the effluent ammonia, the influent ammo-
nia concentration, the waste-water temperature, and the effluent
ammonia concentration. The oxygen proportional-integral (PI)
controller controls the air-flow set point. The inputs to the con-
troller are the oxygen set point and the oxygen concentration in
the last aerobic reactor. The second PI controller controls the
air flow by opening the air valve. The inputs to the controller
are valve opening and air flow. Only the total air flow into the
aerobic reactors can be manipulated. Around half of the total
air flow goes in the first aerobic reactor and the other half in the
second aerobic reactor. Detailed description of the process and
control can be found in [3].

As stated in Section I, the problem with the WWTPs is
that some key sensors often fail. Such a sensor failure affects
the quality of the WWTP’s control. In [3], where a model-
predictive-control algorithm was tested on a WWTP, this issue
was pointed out. The situation is shown in Fig. 2. It is clear that
the malfunction of the influent ammonia sensor causes a peak
in the effluent ammonia concentration. The fault is usually a
consequence of the sensor-cleaning procedure. The sensors are
periodically cleaned and, therefore, turned OFF. However, judg-
ing by the description of the control scheme in [3], we believe
that the reported failures might be caused by a broken internet
link. A monitoring system that can detect the sensor failures
of key variables used in a control algorithm and estimate the
sensor output would minimize the effects of the sensor failures
on the control quality. Although it will take a lot of time and
additional research in order to implement such a system for
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Fig. 2. Effect of sensor failure.

everyday use in the control loop, there is a possible immediate
use for it in the postprocessing of the data. Namely, each year,
the WWT companies have to prepare an annual report of the
functioning of the WWT process. The report includes the trends
of the measured variables for each day. They must also spec-
ify the intervals when the sensors were offline or faulty. The
postprocessing of the data is currently conducted manually. The
presented monitoring system could help speed up the process by
automatically detecting intervals when the sensors were offline
and providing estimated values for that time.

The monitoring system presented in this paper is able to detect
and estimate the values of the following signals: air flow, oxygen
concentration, and influent ammonia concentration.

III. METHODOLOGY AND MATERIALS

In order to estimate the sensor values during the sensor failure,
the monitoring/fault-detection system (FDS) should be based ei-
ther on a process model or on a model that describes the relations
among the monitored variable and the other measured variables.
Environmental systems, such as WWTPs, possess several char-
acteristics that make their modeling and control difficult: They
involve interactions between physical–chemical and biological
processes, they are stochastic, and they are very often periodic
in time, complex, and evolve over time [46]. It is also very dif-
ficult to identify the true simulation model of the process due
to the control loop. Therefore, we propose to use the eFuMo
method to model the relations between the process variables.
The eFuMo method is based on the T–S fuzzy model, which
is a very powerful engineering tool to approximate nonlinear
processes within a required accuracy, provided that enough re-
gions are given [47]. The method implements algorithms for the
online learning of the fuzzy model, such as different adaptation
algorithms, algorithms for adding new clusters and local mod-
els, removing them when they are not valid, merging them, and
splitting them. The used eFuMo algorithms are described in the
next sections.

A. Evolving Fuzzy Model Method

The eFuMo method can be divided into three major parts: the
central decision logic (CDL) that is responsible for monitoring
the method procedure and executing the calls of the necessary

algorithms (evolving and adaptation mechanisms); the evolv-
ing mechanisms that calculate the conditions for the adding,
removing, splitting, and merging of clusters; and the adaptation
mechanism that is responsible for adapting the clusters’ fuzzy
covariance matrices and centers.

The inputs to the eFuMo identification method are the clus-
tering vector (xf ), the regression vector (x), the output of the
process (y), and the number of the current sample (i). The CDL
first checks the current sample number (i), the sample number
when the last change in the cluster number was made, and the
user-defined time delay Nwait . If the sum of these two values
is smaller than the current sample number, the evolving mech-
anisms are called. Otherwise, the CDL skips the call to the
evolving mechanisms and continues with the call to the adap-
tation mechanisms. This was implemented to allow the fuzzy
model to adapt the new structure to the data, before making
any decisions about the removing and adding of clusters. This
approach was also used in [27].

The CDL first calls the adding mechanism, then the removing
mechanism, follows the merging mechanism, and at the end, the
CDL calls the splitting mechanism. If one of the mechanisms
changes the fuzzy structure, other evolving mechanisms that fol-
low are not called and the eFuMo continues with the adaptation
algorithm. The adaptation algorithm is called for every sample.
The CDL block also calculates the variances and means of the
input and output variables and updates the correlation coefficient
used by the supervised merging mechanism. The detailed work-
flow of the method can be found at http://msc.fe.uni-
lj.si/efumo.asp.

More detailed descriptions of the mechanisms are given in
the following sections.

B. Adaptation Mechanisms

The adaptation algorithm adapts the clusters (its centers and
fuzzy covariance matrix) and the local models’ parameters. For
the clustering, the online Gustafson–Kessel (GK) clustering is
used. For the local linear models’ parameter identification, the
weighted least-squares method is used. A detailed derivation of
the adaptation mechanism can be found in [23]. The adapta-
tion mechanism first performs online clustering. For every new
clustering vector, first the distance to the existing clusters is
calculated using the following equation:

Ai = det(Fi(k − 1))
1
z F−1

i (k − 1)

dik =
√

(xf (k) − vi(k − 1))T Ai (xf (k) − vi(k − 1))

(1)

where dik is the distance of the kth sample from the ith cluster,
xf (k) is the clustering vector, Fi is the fuzzy covariance matrix
of the ith cluster, F−1

i is the inverse fuzzy covariance matrix,
det(Fi) is the fuzzy covariance matrix determinant, vi is the
cluster center, and z is the size of the clustering vector. This is
the default distance for the GK clustering algorithm; however,
one can also use the standard Mahalanobis distance (Ai = F−1

i

(k − 1)).
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Next, the membership degrees of the clustering vector are
calculated as

μik =
1

∑c
j=1

(
dik

djk

) 2
η − 1

(2)

follows the adaptation of the sum of the past membership
degrees si :

si(k) = γv si(k − 1) + μη
ik . (3)

Then, the new cluster positions are calculated as

Δvi(k) =
μη

ik (x(k) − vi(k − 1))
si(k)

(4)

vi(k) = vi(k − 1) + Δvi(k). (5)

At the end of the procedure, the adaptations of the fuzzy covari-
ance matrix, its inverse, and the determinant are made:

Bi =
μη

ik

si(k)
(x(k) − vi(k)) (x(k) − vi(k))T

Fi(k) = γc
si(k − 1)

si(k)
Fi(k − 1) + Bi (6)

Ci = F−1
i (k − 1) (x(k) − vi(k)) (x(k) − vi(k))T

× Fi(k − 1)−1Di = γc
si(k − 1)

μη
ik

+ (x(k) − vi(k))T

× Fi(k − 1)−1 (x(k) − vi(k))

F−1
i (k) =

1
γc

si(k)
si(k − 1)

[
F−1

i (k − 1) − Ci

Di

]
(7)

Ei =
1
γc

μη
ik

si(k)
(x(k) − vi(k))T F−1

i (k − 1) (x(k) − vi(k))

det (Fi(k)) =
(

γc
si(k − 1)

si(k)

)z+1

det (Fi(k − 1)) (1 + Ei) .

(8)

Since this algorithm is used for an online identification, we do
not have control of the sample order. It can happen that for a
longer period of time, only the data belonging to one cluster will
arrive to the algorithm. In this case, other clusters would move
to that area. In order to prevent that, a membership-cut criterion
was introduced. This means that the membership degrees that
are lower than a user-specified constant are set to zero. This
way, the clustering vector does not have an effect on the distend
clusters. By means of previous experimentation and testing, it
was found that the value of the constant should be set somewhere
between 0.1 and 0.3 (in this paper, the value 0.3 was used).

After the clustering, the local models’ parameters are ad-
justed. First, the input membership degrees are calculated. In
this paper, we use radial membership functions (Gaussian mem-

bership functions) defined as

μikj
= e

−
(xfj

(k) − vij
(k))2

2ηm Fij j
(k) , j = 1, 2, ...z − 1 i = 1, 2, ..., c

(9)
where xfj

is the jth element of the clustering vector, vij
is the jth

component of the ith cluster center, ηm is the overlapping factor,
and Fij j

is the jth diagonal element of the fuzzy covariance
matrix. The membership degrees under (9) are calculated for
each element of the clustering vector except the last element.
The last element of the clustering vector is the output of the
process. To obtain the membership degree of the clustering
vector to cluster the component, the membership degrees are
combined as

βik =
z−1∏
j=1

μikj
. (10)

Then, the membership degrees are normalized:

βik =
βik∑c

j=1 βjk
, i = 1, 2, ..., c. (11)

One can also use the ellipsoidal Gaussian membership functions
[48]. The next step is constructing the regressors for each local
model:

ψi(k) = βik x(k), yi(k) = βik y(k), i = 1, 2, ..., c. (12)

In addition, the final step is applying the recursive least-
squares method for each local model:

Pi (k) =
1
λr

(
Pi (k − 1) − Pi (k − 1)ψi (k)ψT

i (k)Pi (k − 1)

λr + ψT
i (k)Pi (k − 1)ψi (k)

)

θi (k) = θi (k − 1) + Pi (k)ψi (k)
(
yi (k) − ψT

i (k)θi (k − 1)
)

.

(13)

Different least-squares techniques can be used for adapting the
local model parameters (see, e.g., [29], [39], [49], and [50]).

C. Evolving Mechanisms

Evolving mechanisms are called to upgrade the fuzzy model
structure. The eFuMo method implements different adding, re-
moving, merging, and cluster-splitting algorithms. Next, the
used evolving mechanisms will be described.

1) Adding Mechanism: It is one of the most important mech-
anisms. It adds new clusters to the fuzzy model structure and
improves the fuzzy model performance. In the literature, there
are several different conditions for adding new clusters based
on the model output error, the distance of the current sample to
the existing cluster, and the ε-completeness, which is based on
the current sample’s membership degree to existing clusters.

In this paper, the distance condition is used for the cluster
adding. With the eFuMo method, different distances can be
used. In this application, the normalized Mahalanobis distance
was used. When using the normalized Mahanalobis distance,
the normalization vector is formed from diagonal elements of
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the fuzzy matrix:

sin o rm =
[√

fi1 1

√
fi2 2 ...

√
fip p

]T

. (14)

The normalized distance is then calculated as

din o rm =
((xf (k) − vi)T F−1

i (xf (k) − vi))0.5

kn (sT
in o rm

F−1
i sin o rm )0.5

(15)

where kn is a user-defined constant. The cluster satisfies the
distance-adding criterion if the normalized distance is greater
than 1.

A new cluster center is positioned to the current clustering
vector (vi = xf (k)). The fuzzy covariance matrix of a new
cluster is initialized as follows:

Fi =

⎡
⎢⎢⎢⎢⎢⎢⎣

σ2
1 0 · · · 0

0 σ2
2 · · · 0

...
...

. . .
...

0 0 · · · σ2
z

⎤
⎥⎥⎥⎥⎥⎥⎦

(16)

where the diagonal elements of the matrix depend on the dis-
tance to the nearest cluster and the allowed influence zone. The
influence zone εβ is defined by the user and represents the mem-
bership degree of a nearest cluster to the newly created one. The
diagonal elements are calculated as

σ2
j = −

d2
j

2ηm ln(εβ )
(17)

where dj is the distance between the jth element of the new clus-
ter center and the cluster center nearest to it. If the distance dj is
zero, we take the jth diagonal element of the fuzzy covariance
matrix of the nearest cluster.

The parameters of the new local model are initialized as the
weighted mean:

θi+1,j =
∑c

i=1 ωij θij∑c
i=1 ωij

, j = 1, ...z + 1 (18)

where the weights are a combination of the membership degrees
βi and the local model parameter’s variance Pij j

:

ωij = βi
1

Pij j

. (19)

The parameters for the first local model are initialized with
zero. The initial position of the first cluster center is the same
as the first clustering vector (xf (1)). The fuzzy covariance ma-
trix of the first cluster is initialized in the same manner as ex-
plained above. Except that instead of the distance to the closest
cluster, the expected range of the input and output variables
and the expected number of clusters are used to calculate the
distance dj .

It is also important to mention that if a certain clustering
vector satisfies the distance-adding criterion, a new cluster will
not necessarily be created. In order for a new cluster to be
created, at least Nc previous samples must satisfy the distance-
adding criterion. This reduces influence of the outliers [51].

2) Removing Mechanism: It is for removing old clusters and
clusters created based on outliers. There are two conditions for
removing: a minimum existence condition and a support-age
ratio condition [40]. The minimum existence condition removes
the clusters that in a certain period after creation (kdelay ) do not
receive enough support samples (Nsi

). Support is the number
of samples (clustering vectors) belonging to the cluster. The
sample always belongs to the closest cluster. The support-age
condition is based on the clusters’ supports (Nsi

) normalized
with the clusters’ age [see (20)]. The cluster with a ratio lower
than a percentage (ε) of the mean ratio is deleted. Age (ai ) is
defined as the number of samples from the cluster’s creation ki

to the current sample k:

ai = k − ki, Sn i
=

Nsi

ai
. (20)

Both conditions for removing can be written as

IF Sn i
< ε mean(Sn ) OR

(
Nsi

< Nst r h AND

k > ki + kdelay
)
THEN remove i th cluster. (21)

3) Splitting Mechanism: The eFuMo’s splitting mechanism
is based on the relative model error that clusters gather over
time. The error is updated every time the splitting mechanism
is called, and the current sample does not satisfy the distance-
adding condition. First, the relative model error is calculated:

e(k) =
|ym (k) − y(k)|

nσσy
(22)

where y is the real output, and ym is the model output. σy

represents the current standard deviation of the process output
and is calculated as

ȳ(k) =
1
k

((k − 1)ȳ(k − 1) + y(k))

σ2
y (k) =

1
k

(
(k − 1)(σ2

y (k − 1) + ȳ(k − 1)2) + y(k)2) −

− 1
k2 ((k − 1)ȳ(k − 1) + y(k))2 . (23)

The factor nσ was set as 3.4. The value was established by
experimentation. In most cases, by multiplying the standard
deviation with this factor, the whole range of the variable is
obtained. The error is then divided among the existing clusters
and added to the previous cluster error:

esum i
(k) = esum i

(k − 1) + βie(k) (24)

where βi is the membership degree of the current sample to the
ith cluster. The splitting mechanism checks the cluster with the
largest error. If its support from the last change (Nsli ) is greater
than a threshold (Nslt r h ) and its mean relative error is larger
than a threshold value, the cluster is split. The error threshold is
set by the user, specifying the maximum (emax ) and minimum
(emin ) error threshold and the decay constant (T ). The current
threshold is calculated as

etrh = max(emaxexp(−Ne/T ), emin) (25)

where Ne are the number of samples that are used for the error
calculation and the decay constant, respectively. If a cluster is
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added to or removed from the structure, Nsli , Ne , and esum i
are

set to zero.
The positions of the split clusters are calculated using the

diagonal elements (vector sin o rm ) of the fuzzy covariance matrix:

vi1 = vi + 0.5sin o rm , vi2 = vi − 0.5sin o rm (26)

where i is the index of the cluster that is split. The new center
positions can also be calculated using the singular value decom-
position, as in [52]. The fuzzy covariance matrix, the support,
and the sum of the past membership degrees are set to half of
their original values for both clusters. The time of the cluster
creation is initialized as the creation time of the original cluster
for both clusters.

4) Merging Mechanism: There are two types of merging al-
gorithms implemented in eFuMo: supervised and unsupervised.
The eFuMo unsupervised merging merges the clusters that are
close together. The similarity and the vicinity of the two clusters
are measured using the normalized distance:

d2
ik = (vi − vk )T F−1

i (vi − vk ), i, k = 1, ..., c i �= k

(27)

dnorm i k
=

√
d2

ik

2sT
in o rm

F−1
i sin o rm

. (28)

The distances are calculated only for clusters that have larger
support Nsli than a user-defined threshold Nslt r h . The clusters
are considered for merging if both normalized distances dnorm i k

and dnormk i
are shorter than the logarithm of the predefined

threshold εβm
. If this criterion is satisfied, the distance ratio is

checked. If the ratio is above the user-defined threshold kdm e rg e ,
clusters are merged. The rule for merging can be written as

IF dnorm i k
<

√
−ln(εβm

) AND dnormk i
<

√
−ln(εβm

)

AND
1 − min(dnorm i k

, dnormk i
)

max(dnorm i k
, dnormk i

)
< kdm e rg e

THEN merge ith and kth cluster. (29)

The parameters of the new cluster are initialized as a weighted
mean. The fuzzy covariance and the centers are initialized as
proposed in [39]. The new sum of the past membership degrees
is calculated as the weighted mean, where the weights are the
clusters’ support. The support of the merged cluster and the time
of creation are calculated as the weighted mean, where weights
are the sums of the past membership degrees (si , sk ). The pa-
rameters of the new merged local model are also calculated as
the weighted mean using a combination of clusters’ support
(Nsi ) and the variance of each parameter as the weights.

The supervised merging considers the difference between the
local models. It is meant to merge the neighborhood clusters
that have approximately the same shape and local model but are
not close enough for the unsupervised merging to merge them.
In order to detect these clusters, three different measures are
used. The algorithm uses the angles between the local models’
parameters (angle-merging condition), the correlation between
the membership degrees (correlation-merging condition), and
the distance ratio (distance-ratio-merging condition). The cor-

relation coefficient is calculated based on the monitoring of
the membership degrees and their products βij (k) = βij (k −
1) + βi(k)βj (k), βii(k) = βii(k − 1) + βi(k)βi(k) and is cal-
culated as

Cij (k) =
βij

β0.5
ii β0.5

jj

. (30)

If the coefficient Cij (k) is above the user-defined threshold, the
clusters i and j are considered for merging.

The distance-ratio criterion for merging is the same as in
(29). The clusters are considered for merging if the distance
ratio is lower than a user-defined threshold kdm e rg e s

and the
correlation coefficient is at least half of the threshold defined for
the correlation-merging condition.

The angle-merging criterion is based on local models’ angles.
The idea is to compare the local models by the contribution
of each input to the system output. First, the parameters are
normalized with the highest absolute value:

θnik
=

θik

max
1≤q≤c

|θqk
| . (31)

The normalized parameters of the two local models i and j are
then compared by means of the angle that they represent in a
one-input one-output space:

αijk
= | arctan(θnik

) − arctan(θnjk
)| (32)

where k is the parameter index. The clusters are considered
for merging if all the angles αijk

, k = 1, .., z, where z is the
number of the local model’s parameters, are below the user-
defined threshold and the correlation coefficient is at least half
of the threshold defined for the correlation-merging condition.

After the eFuMo identifies the possible merging pairs with
the correlation, the angle, and the distance-ratio conditions, it
then estimates the error made when merging the local models:

e1 =
∣∣θT

i x1 − θT
j x1

∣∣

e2 =
z−1∑
r=1

|θir
(x1r

+ 2σur −1 ) − θjr
(x1r

+ 2σur −1 )|

e3 =
z−1∑
r=1

|θir
(x1r

− 2σur −1 ) − θjr
(x1r

− 2σur −1 )|

e =
1

3nσσy

3∑
r=1

er (33)

where x1 = [1, ū1 , ..., ūz−1 ]T , ū is the mean value of a certain
input variable, σur −1 is its standard deviation, σy is the standard
deviation of the process output, z − 1 is the number of inputs,
and θir

is the rth parameter of the ith local model. If the clus-
tering vector is the same as the regression vector, the algorithm
checks for the model error only for the region where the two
local models are valid. The mean value of the inputs and their
standard deviations are calculated from the cluster center vector
and the fuzzy covariance matrix. The pair with the lowest error
below the threshold is merged. Note that two cluster are only
merged if no other clusters are between them.
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The center of the merged cluster is positioned in the middle
between the maximum and minimum borders of both clusters:

vnew = vj + d2

d1 = vi − vj , d2 =
v′

i − v′
j

2
v′

i = vi + sign(d1)sin o rm, v′
j =vj − sign(d1)sjn o rm . (34)

The fuzzy covariance matrix of a new merged cluster is ini-
tialized as the sum of both clusters’ fuzzy covariance matrices;
in the same way, the cluster’s support is initialized. The local
model parameters are initialized as the mean of both local mod-
els’ parameters. The creation time is initialized to the creation
time of the oldest cluster in the pair. The sum of the past mem-
bership degrees is initialized to the maximum sum of the past
membership degrees of both clusters.

D. About the Parameters

The evolving methods usually have a number of parameters
that need to be tuned properly in order to achieve good models.
The number of parameters is an inherent problem of all self-
adjusting, adaptive, or learning algorithms. On the one hand,
the parameters make the methods very flexible to a variety of
data and problems, while on the other hand, the tuning of the
parameters can be a very time-consuming task. In order to help
tune the eFuMo method, some guidelines for the parameters are
given in the next sections.

1) Adaptation Mechanism: For the adaptation mechanisms,
the user must set the following parameters: the fuzziness factor
η. With this parameter, we control the overlapping of the mem-
bership functions under (2). The usual value for this factor is
2 [53]. Higher factors mean smoother transitions between the
clusters. However, it is not recommended to set the factors too
high. When setting the factor to 1, crisp transitions between
the clusters are obtained. The overlapping factor ηm has the
same effect on the membership functions defined by (11). The
standard value in this case is 1. Both factors also affect the accu-
racy of the model. In general, you will get more accurate local
models when setting ηm to lower values (more crisp transitions
between the clusters). In [54], a study of the fuzziness factor
and overlapping factor on the fuzzy model’s accuracy is pre-
sented. The study also deals with the impact of the forgetting
factors. The factors are introduced to handle the concept drift
[55]. The forgetting factors γc and γv should be set to the same
value. If the γc is higher than γv , the fuzzy covariance matrix
is larger than it should be. If γc is lower than γv , the fuzzy
covariance matrix is smaller than it should be. When setting the
forgetting factors, we can use the equation introduced in [56]:
λ = 1 − 2

N , where λ is the forgetting factor, and N is the width
of the forgetting window (the number of samples that have an
effect on the estimate). With the forgetting factors, we control
the speed of the adaptation. The initial value of si controls the
initial speed of the adaptation. Theoretically, the initial value
for si should be 1. However, when setting it higher, the initial
speed of the adaptation can be lowered. The equation for the

center adaptation can be written in the following form:

vi(k) =
(

1 − μη
ik

si(k)

)
vi(k − 1) +

μη
ik

si(k)
xf (k). (35)

The equation represents a first-order model with a variable time
constant and gain. The speed of the adaptation is governed by

the term
(
1 − μη

i k

si (k)

)
. The term is indirectly controlled by the

forgetting factor γv and by the initial value of si . The initial
covariance matrix is set as P i(0) = αI , where I is the unity
matrix, and α is a large positive constant [29]. The higher the
constant α, the faster the initial adaptation of the local models.
However, if α is set too high (in our experiences higher than
100), spikes in the model prediction can be observed when a
new cluster is added.

2) Adding Mechanism: The user-specified parameters for
the adding condition are as follows: the distance-adding nor-
malization constant kn . The factor is usually set between 2 and
3. These values come from a 1-D problem, where the distances
are usually compared to some reference distance. This distance
is, in most cases, 2σ or 3σ of the data, where σ represents the
standard deviation. In the case of the presented adding mech-
anism, the reference distance was defined as the Mahalanobis
distance from the cluster center to a reference point. The distance
between the reference point and the cluster center in each di-
mension is the same as the standard deviation of the data around
the cluster center for that dimension. The result of higher kn

values is a fuzzy model with a smaller number of clusters. If
kn is set too low, the fuzzy model might have too many clus-
ters. The parameter εβ is important for the initialization of a
new fuzzy covariance matrix. εβ influences the spread of the
membership functions. As described in [31], if the membership
function is too narrow, it can lead to overfitting; too wide mem-
bership functions lead to too much averaging. εβ defines the
membership degree of the nearest cluster to that newly created
in one dimension. The total membership degree is then εz−1

β .
The idea is to define the variance so that the new cluster center
is out of the 2σ zone. The default setting for this parameter
is 0.1. However, when setting the parameter, one should also
consider the dimensionality of the problem [31]. The parameter
Nc is set depending on the expected duration of the outliers. If
the number is set high the delay of adding a new cluster is in-
creased, but the system is more resistant to outliers. In [40], the
dynamical adaptation of Nc is proposed. The eFuMo method
has a fixed threshold.

3) Removing Mechanism: The user must specify three pa-
rameters: Nst r h and kdelay for the minimum existence condition
and ε for the support-age condition. The minimum existence
condition is used for removing the clusters created based on a
faulty measurement. They should be set based on the data distri-
bution and the length of the outliers. If the data come randomly
from random clusters, this criterion should be turned OFF (also
Nc should be set to 0). Like with the parameter Nc , the user must
estimate how many samples does it take to detect the creation of
a new cluster. In [40], the values 3 and 10 are proposed for Nst r h

and kdelay , respectively. The support-age condition removes the
inactive clusters. The parameter ε is usually set to 0.01, meaning
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that the clusters with a ration lower than 1% of the mean are
deleted. It should be noted that this condition should be turned
OFF when dealing with a process that is at one working point
for a long period of time. In such a case, the nonactive clusters’
ratio will decrease, and the clusters will be removed from the
structure, even though they might still be valid.

4) Splitting Mechanism: It is meant for fine tuning of the
fuzzy model. The adaptive error threshold is meant to allow
first the adding mechanism to add clusters and cover the prob-
lem space. After that, the splitting mechanism is responsible
for creating new clusters with the splitting procedure. emax is
usually set to 0.5 and emin to 0.05. This means that we allow
each cluster to have a 50% error at the start, and at the end, each
cluster should have a mean error less than 5% . If the maximum
and minimum thresholds are set too low, there is a possibility of
overfitting the model. With the decay constant T , the threshold
is slowly decreasing to allow the model adaptation and trust-
worthy estimation of the cluster errors. Usually, T is set to at
least 100. Meaning that after 231 samples, the error threshold
is equal to emin (when the proposed threshold values are used).
The threshold Nslt r h is a safety parameter that does not allow
splitting of the newly created clusters and that ensures that at
least some representative data samples are used for the clus-
ter error calculation. Higher threshold values delay the splitting
procedure, but the error estimation is more accurate. The default
value is 10.

5) Merging Mechanism: The unsupervised merging mech-
anism has three tuning parameters. Nslt r h is the same as with
the splitting mechanism and ensures that newly created clusters
have at least some time to adapt. The distance ratio is used to
measure the similarity of the clusters. In an ideal case, the dis-
tance ratio between two similar clusters would be 1. In practice,
this is almost never true; therefore, a tolerance bound kdm e rg e

was introduced. We usually allow the distances to differ by 10%.
For unsupervised merging, the vicinity of the clusters is also im-
portant. The vicinity is measured by the distance. A threshold
vicinity is given by εβm

. The parameter was designed in such
a way that it reflects the membership degree of one cluster to
the other cluster. It should be set between 0.8 and 0.9, which in
terms of membership degrees means a high overlapping between
two clusters. In our case, this means that the clusters that are
closer than 0.67 (εβm

= 0.8) or 0.45 (εβm
= 0.9) of their nor-

malized distance are merged together. The supervised merging
mechanism has four parameters that need tuning: the correla-
tion threshold Ctrh , the distance-ratio threshold kdm e rg e s

, the
angle-difference threshold αtrh , and the error threshold emerge .
The correlation coefficient is usually set to 0.8. Lower values
mean that more cluster pairs will be checked for error, slow-
ing down the algorithm. Higher values of the parameter will
result in less detected pairs, leaving some unnecessary clus-
ters in the structure. The distance ratio kdm e rg e s

can be set to
the same value as with the unsupervised merging. In our ap-
plications, we usually allow 2–4◦ of angle difference. Higher
values of the distance ratio and the angle threshold have the
same effect as lower values of correlation threshold. For the
error threshold emerge , it makes sense to set it at least to emin or
lower.

TABLE I
RESULTS FOR THE DYNAMICAL SYSTEM

Method Rules RMSE

SAFIS [32] 8 0.0116
MRAN [59] 10 0.0129
RANEKF [60] 11 0.0184
simpl eTS [61] 18 0.0122
eTS [29] 19 0.0082
SONFIN [25] 10 0.013
SAFIN [57] 13 0.007
eFuMo [48] 12 0.0035

TABLE II
RESULTS FOR TSCD

Method Rules RMSE

DENFIS [28] 17 0.0510
eFuMo [48] 12 0.0543
ANYA [62] 13 0.0543
ELM [63] 20 0.1564
eHFN [64] 13 0.0936
eNNEL [58] 13 0.0761

TABLE III
RESULTS FOR BOX–JENKINS GAS FURNACE DATA WHERE ALL DATA ARE

USED FOR TRAINING AND VALIDATION

Method Rules RMSE

DENFIS [28] 12 0.0190
eFuMo [48] 3 0.0337
ANYA [62] 7 0.0393
ELM [63] 20 0.0232
eHFN [64] 7 0.0245
eNNEL [58] 7 0.0354

E. Comparison of the eFuMo to Other Similar Methods

To show that the used evolving fuzzy model method can
achieve a similar model performance to other existing online
learning methods, some results on benchmark problems are
given in this section. In Table I, the results are given for the
modeling of the dynamical system given by (36). The parame-
ters a, b, and c were set to 1. The input to the model is defined
as u(k) = sin

(
2π k

100

)
. According to [57], the learning set in-

cluded 50 000 data points, and 200 data points were used for
the testing

y(k + 1) =
ay(k)

(1 + by(k)2)
+ cu(k)3 . (36)

In Table II, the results for the benchmark problem of the time-
series concept drift (TSCD) are presented. The process model
is given by (36). The difference compared with the previous
example is that here the parameters a, b, and c are not fixed, but
change over time according to the equations in [58], where the
detailed description of experiment is also given.

In Tables III and IV, the results for the Box–Jenkins gas-
furnace data are presented. The two tables demonstrate two
different experimental setups. In Table III, the experiment is
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TABLE IV
RESULTS FOR BOX–JENKINS GAS-FURNACE DATA WHERE 200 DATA ARE

USED FOR TRAINING

Method Rules RMSE

eTS [29] 5 0.0490
simpl eTS [61] 3 0.0485
SOFNN [33] 4 0.0480
SOFMLS [43] 5 0.0474
eFuMo [48] 4 0.0433

TABLE V
RESULTS FOR MACKEY–GLASS TIME SERIES

Method Rules RMSE

DENFIS [28] 58 0.0628
DENFIS [28] 27 0.0920
exTS [65] 10 0.0754
eTS+ [40] 10 0.0892
eTS [29] 113 0.0217
rGK [23] 58 0.0481
rGK [23] 10 0.0862
rFCM [22] 10 0.1039
rFCM [22] 58 0.0702
rFCM [22] 100 0.0285
eFuMo [48] 21 0.0753
eFuMo [48] 41 0.0316
eFuMo [48] 68 0.0224

set up as described in [58]. All the data are used for testing
and validation. The error is calculated for the next sample. In
Table IV, the experiment is set up as described in [43]. The first
200 data points are used for the learning, and the remaining 90
data points are used for the validation.

Table V presents the results for an 85-step prediction of a
Mackey–Glass time series. The setup of the experiment is de-
scribed in [29].

The presented results show that the eFuMo achieves a com-
parable degree of accuracy with that of other evolving methods.
In some cases, it can even produce more accurate models than
other online learning methods. In general, the eFuMo method
gives us better results than its predecessors rFCM and rGK,
which do not have any evolving mechanisms. The advantage of
the evolving methods over the adaptive methods is also that the
user does not have to define the number of clusters and initial
model structure. The different number of clusters generated by
the eFuMo method was achieved by setting the adding-distance
normalization constant. The higher the constant, the lower the
number of clusters. The detailed differences among the eFuMo
settings can be found in the files provided under the previously
given download link.

F. Monitoring System

As stated in Section I, the monitoring system is based on the
presented eFuMo method, which is responsible for the learn-
ing and adapting the fuzzy model. Two FDSs were designed.
The first was for monitoring the air flow and oxygen concen-
tration; the second was designed for monitoring the influent

Fig. 3. FDS attached to the process.

ammonia concentration. Both systems are based on the same
principles. They use the T–S fuzzy model to estimate the rela-
tions between the variables. To design the monitoring system,
the whole WWTP was divided into three subprocesses: the air-
flow process, the oxygen concentration process, and the influent
ammonia process. The inputs to the FDS are the inputs to the
monitored subprocess and their outputs, as shown in Fig. 3.
The air flow is estimated using the information about the valve
opening and the previous measurement of the air flow; oxygen
concentration is estimated from the air flow, the temperature in
the reactor, and the previous measurement of the oxygen concen-
tration. For the air flow and the oxygen concentration, first-order
local models were chosen. The influent ammonia is estimated
using measurements of the TN concentration at the effluent and
influent, the temperature of the reactor, the ammonia concentra-
tion at the effluent, and the flow rate of the effluent water. For the
influent ammonia, static local models were chosen. It should be
noted that the obtained models are not real process simulation
models. They are used for modeling the relations between the
monitored variable and other correlated variables and are only
valid for short prediction horizon. The signals used as FDS in-
puts are shown in Fig. 4. The temperature for the first dataset
ranged from 11 ◦C to 15 ◦C and for the second dataset from
14 ◦C to 16 ◦C. The inputs were selected by a backward selec-
tion. The idea is to detect the error in the process output based
on the presented inputs. The outputs of the FDS are ysoft(k)
and alarm(k). The output alarm(k) indicates the presence of
the fault in the measured signal (alarm(k) = 1: fault detected).
The output ysoft(k) is the process output with the removed fault.
If there is no fault detected, the output ysoft(k) is equal to the
process output y(k). If the fault is detected, the output ysoft(k) is
calculated based on a fuzzy model that describes the proper rela-
tions between the input signals and the monitored signals. The
FDS determines the fault based on the internal fuzzy model of
the signal relations. For each monitored signal, the three models
are kept in the FDS’s memory: a full eFuMo, an adaptive fuzzy
model (parameters of clusters and local models are adapted), and
a fuzzy model with fixed parameters that holds the information
about the last good known parameters. The learning of the fuzzy
models is delayed for 200 samples. The delay was introduced
for future research to cope with slower faults. The data sample is
used for learning if there was no fault detected. For each sample
and each model, the relative prediction error is calculated. The
calculated error (its absolute value) is assigned to the model.
The prediction error assigned to the fuzzy model is combined
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Fig. 4. Inputs to FDS.

with the simulation error, which is calculated periodically on
every 200th sample using the 200 samples in the buffer. The
prediction error is also used for learning the prediction-error
fuzzy model. Namely, each model that describes the signal re-
lations is accompanied by the error model. The error model is
used to calculate the allowed difference between the estimated
and measured signals. For estimating the sensor output during
the failure, the model with the lowest assigned error is used.

The adaptive and fixed model structure and parameters can be
replaced when a cluster is added or removed from the eFuMo’s
structure. Before the number of cluster changes, the error of
each model is checked. If the evolving model has the smallest
error, the adaptive and fixed model structure is replaced by the
evolving model’s structure. In addition, their error models are
replaced. The simplified diagram of the procedure is shown
in Fig. 5.

The variances denoted as σ evolving, σ adaptive, and
σ fixed are calculated from the error model:

σ =
c∑

i=1

βi

√
Fir , r

(37)

Fig. 5. Scheme of the FDS for a subprocess.

where Fir , r
is the last diagonal element of the error fuzzy

model’s cluster i. This element represents the variance of the
error. As seen in Fig. 5, the alarm is raised if the difference
between the estimated output and the measured output is higher
than the maximum allowed difference. Note that the alarm is
turned OFF when for at least 30 consecutive samples the differ-
ence is below the defined threshold for turning OFF the alarm.
To ensure a smooth transition from the estimated output to the
measured output, when the alarm is turned OFF, a filter was
implemented that calculated the output of the FDS as

ysoft =
((30 − kalarm)ymodel + kalarmy)

30
(38)

where kalarm is the number of samples from the sample when the
condition for turning the alarm OFF was reached. The maximum
number of kalarm is 30, and its value is reset to 0 every time a
new alarm is raised.

G. Detecting the False Alarms Due to Manual Calibration

During the design phase, it was noticed that manual tuning
of the oxygen concentration was performed. This is seen on
the upper graph in Fig. 6. The drift of the sensor was manually
reduced by the operator, causing the FDS to report an error.
It can be seen that the shapes of the estimated and measured
outputs are practically the same. However, due to an offset of the
signal, the FDS detects the error. To automatically turn OFF such
alarms, an additional algorithm was implemented to the FDS.
This algorithm is turned ON when a new alarm is detected. Two
different algorithms were tested. Both performed very similarly,
as will be seen in Section IV. The first one is based on the
correlation between the estimated and measured outputs, and
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Fig. 6. Effect of sensor calibration.

the other one is based on the variance of the measured, the
estimated, and the error signals.

1) Correlation Procedure: When the alarm is raised, the al-
gorithm starts calculating the mean values of the measured (ȳ)
and the estimated sensor outputs (¯̂y) using (23). After a certain
number of samples (in our case 500), the algorithm stops re-
freshing the mean values and starts calculating the products for
calculating Pearson’s correlation coefficient:

ccy (k) = cy (k − 1) + (ȳ − y(k))2

cŷ (k) = cŷ (k − 1) + (¯̂y − ŷ(k))2

cy ŷ (k) = cy ŷ (k − 1) + (¯̂y − ŷ(k))(ȳ − y(k)). (39)

After a certain number of samples (in our case 1000), the algo-
rithm starts to check the correlation coefficient:

Cyŷ =
cy ŷ (k)√

cŷ (k)
√

cy (k)
. (40)

The algorithm turns OFF the alarm automatically when the cor-
relation coefficient rises above the user-defined threshold (in
our case 0.9) and stays above it for at least 50 consecutive sam-
ples. The algorithm is turned OFF when, for at least a certain
number of consecutive samples (in our case 100), the difference
between the estimated and the measured outputs is below the
maximum allowed difference. The algorithm is also turned OFF
if its maximum functioning time is reached. In our case, the
maximum functioning time was set to 700 samples, counting
from the sample when the correlation coefficient reached the
threshold. These values were determined ad-hoc and they de-
pend on a specific problem and on the adaptation ability of the
fuzzy model.

2) Variance Procedure: With this procedure, the algorithm
starts to calculate the variances of the estimated output, the
measured output, and the variance of their difference when the
alarm is raised. The idea behind this solution is that the variance
of the estimated and measured output (if they are only shifted)
should be higher than the variance of their difference, under the
assumption that the model used for estimating the output is not

TABLE VI
SETTINGS FOR THE LEARNING METHOD AND FUZZY MODEL

Parameter air flow concentration O2 concentration NH4

Nw a i t 100 100 30
Adaptation mechanism and model

η / ηm 2 / 1 2 / 0.25 2 / 2
γv / γm 1 0.9996 0.9999995
λr 1 0.9998 0.9999995
mem. deg. cut 0.3 0.3 0.3
si (0) 1 1 50
α 1 1 1

Adding mechanism
kn 2 1.6 2
Nc 5 5 4
εβ 0.1 0.1 0.1

Removing mechanism
kd e la y 20 20 20
Ns t r h 10 10 10
ε 0.01 0.01 0.01

Splitting mechanism
em a x 0.5 0.5 0.5
em in 0.05 0.05 0.05
T 1000 1000 1000
Ns l t r h 10 10 15

Unsupervised merging mechanism
Ns l t r h 10 10 10
kd m e rg e 0.1 0.1 0.1
εβ m 0.8 0.8 0.8

Supervised merging mechanism
C t r h 0.9 0.9 0.9
α t r h 2 2 2
kd m e r g e s

0.05 0.05 0.05
em e r g e 0.05 0.02 0.05

biased and the process output changes (there is an excitation
present). The variances are calculated recursively with (23).
When the variance of the difference between the estimated and
measured outputs falls under the variance of both the estimated
and the measured outputs the raised alarm is turned OFF. The
algorithm starts to check this condition after the alarm is present
for some time (in our case 300 samples). The ending of the
algorithm is defined in the same manner as with the correlation
procedure.

IV. RESULTS AND DISCUSSION

The presented system was tested on real data gathered from
a local WWT plant. The presented data were then centered and
normalized. To estimate the performance of the system during
a sensor’s malfunction, a failure was simulated on a known part
of the data. Note that the duration of the simulated fault was
exaggerated in order to test the system. The simulated faults
lasted for about 7000 samples (around 39 h). Usually, the faults
last from about a few minutes up to 6 h. The settings of the
evolving method were obtained based on trial and error. They
are given in Table VI. For clustering with the air-flow model,
the distance under (1) was used. For the other two models, the
Mahanalobis distance was used. The membership degrees for
the air flow and O2 were radial [see (9)] and for the NH4 model
they were ellipsoidal [48].
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Fig. 7. Air-flow and oxygen-concentration fault detection.

Fig. 8. Closeup of simulated air-flow and oxygen-concentration signal fault.

A. Oxygen and Air-Flow Fault Detection

For the air-flow signal, the fault was simulated between sam-
ples 38 000 and 43 000. For the oxygen-concentration signal,
the fault was simulated between the samples 35 000 and 43 000.
Note that with the oxygen concentration, two faults occur simul-
taneously. The first is on the input to the oxygen-concentration
FDS (on an air-flow signal) and the second is on the oxygen-
concentration signal itself. The whole experiment is shown in
Fig. 7. The first 8000 data points were used for the initial learn-
ing of the fuzzy model. The learning was performed using the
eFuMo method. The alarm signal and the number of fuzzy model
clusters are shown in Fig. 9, while Fig. 8 shows a closeup of
the simulated fault for both the air-flow and oxygen signals. Be-
sides the simulated fault, the system also detected some faults
that were not added to the signals. These faults were caused by
sudden spikes in the monitored signals, and therefore, the de-
tection of the fault seems justified. When identifying the valve
opening and the air-flow relation, it was noticed that when the
valve is fully opened very rapidly, the air flow first increases then
decreases, and then slowly increases again. This phenomenon
introduces an additional dynamic into the process, which was

Fig. 9. Alarm signal and number of clusters over the experiment.

TABLE VII
ESTIMATION ERROR DURING THE SIMULATED FAULT

Estimation error air flow concentration O2 concentration NH4

NDEI 0.223 0.488 0.411
min. abs. 0.005 [L/s] 2.83e-5

[
g/m3

]
3.69e-5

[
g/m3

]
max. abs. 531.83 [L/s] 1.347

[
g/m3

]
5.074

[
g/m3

]
avg. abs. 39.97 [L/s] 0.189

[
g/m3

]
1.367

[
g/m3

]
signal range 1562 [L/s] 2.72

[
g/m3

]
18.395

[
g/m3

]
min. rel. 2.99e-6 1.04e-5 2e-6
max. rel. 0.341 0.495 0.276
avg. rel. 0.026 0.0695 0.0744
faulty samples 38–43 [×103 ] 35–43 [×103 ] 15–18.5 [×103 ]

hard to model with the chosen regressors and method, proba-
bly also because the occurrences of this phenomenon were not
very frequent. This can be seen in Fig. 7 at around 0.5 × 104 ,
1 × 104 , and in Fig. 8 at sample 3.9 × 104 . The model is slightly
less accurate when this happens. If the phenomenon occurred
more frequently, the performance of the model in this part of
the input–output space would improve.

Even though the estimated signal is not entirely covering the
measured signal, we believe that the estimation accuracy is still
good enough for the control purposes of the WWTP. The error
between the measured and estimated signal during the fault is
given in Table VII. This table also includes the NIDE index;
the minimum, maximum, and mean absolute error; the signal
range for the faulty samples; the minimum, maximum, and mean
relative error; and the samples where the fault was simulated are
given. It is clear that even if both signals (air-flow and oxygen-
concentration) fail simultaneously, the system is able to produce
a reasonably good estimation of the sensor signal. The crucial
signal on which the oxygen and air-flow FDS depend is the valve
opening. If the fault was to occur on the valve-opening signal,
the FDS would fail. The system would raise the alarm for the
air-flow signal. In order to be able to detect faults on the valve-
opening signal an additional logic should be implemented. The
logic should check for the alarm of the oxygen concentration
based on the measured air flow and the estimated air flow. If the
alarm is raised for the second case and not for the first case, it
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Fig. 10. Effluent ammonia fault detection.

Fig. 11. Alarm and number of clusters over the ammonia experiment.

is highly likely that the fault was on the valve-opening signal.
However, the fault of the valve-opening signal is unlikely to
happen, since this is the controller output, and therefore, this
logic was omitted in our FDS.

B. Influent Ammonia Concentration

For the ammonia concentration, the fault was simulated be-
tween samples 15 000 and 18 500. The first 7000 samples were
chosen for the initial model learning using the eFuMo method.
The results are shown in Fig. 10. The upper graph displays the
whole experiment, and the lower graph displays an interval with
the simulated fault. The alarm signal and the number of clusters
are shown in Fig. 11. The estimation error is given in the last
column of Table VII. The peak at around sample 16 000 was not
considered in the error calculation.

As with the previous experiment, it can be seen that the ac-
curacy of the estimated output is fairly good. The FDS detected
some faults that were not simulated. These faults were caused
by spikes in the output signal. Judging from the signals, these
spikes could be caused by the faulty measurement. Since the in-
fluent ammonia signal is normally used for the gain scheduling
of the main controller, the accuracy of the estimations is not so
crucial. In contrast with the air-flow and oxygen-concentration
signals, where the estimation of both signals depends only on
the valve-opening signal, which is very unlikely to be faulty,
the monitoring of the influent ammonia concentration depends
on four signals that may also be faulty. Therefore, it can hap-
pen that the alarm is raised on the influent ammonia signal,
even though it is not faulty. This will happen if a fault oc-
curs on an input signal, e.g., the influent TN signal. Out of
the four input signals, this one is the most likely to be faulty.
In future works, an additional fault-isolation algorithm should
be designed that is able to distinguish between a real fault on
an output signal and a fault caused by an input signal. This
will probably include some statistical modeling of the signals
(e.g., a PCA or a time-series approximation of the influent
ammonia).

C. False Alarms Due to Manual Calibration Detection

As can be seen on the upper graph in Fig. 6, the manual
tuning creates an offset of the measured signal, resulting in
the detection of a fault. At around sample 8400, a real fault
occurs, which then quickly vanishes. Later on, the measured
signal is shifted. The FDS detects the alarm. Because the signal
is shifted after the fault, the alarm is still present. The alarm
is finally turned OFF at sample 11 500, when the measured
signal comes into the allowed difference zone and stays there
long enough for the fuzzy model to adapt itself to the signal
shift. On the lower graph in Fig. 6, the false-alarm detection
was implemented. The plotted response shows the correlation
procedure. The response of the variance procedure is practically
the same and was, therefore, not plotted. It can be seen that the
signal shift is successfully detected, and the alarm is turned
OFF more quickly than without the implemented false-alarm
detection algorithm.

On the upper graph in Fig. 12, the course of the correlation
factor and, on the lower graph, the variances are shown. The cor-
relation factor first reaches the threshold value at sample 8840.
The alarm raised based on the allowed maximum difference of
the measured, and estimated output is overridden from sample
9361 on. For this sample, the conditions are met for overriding
the original alarm. The last raised alarm based on the output
differences is raised at sample 9670. Therefore, the correlation
procedure is switched OFF at sample 9770.

With the variance procedure, the variance of the difference
(between the estimated and measured signal) falls under the
measured signal’s variance very quickly. This is partly because
the initial fault of the measured signal is included in the vari-
ance calculation. The variance of the difference falls under the
variance of the estimated signal at sample 9475. With this, the
conditions for overriding the original alarm are met. The last
alarm based on the output differences is raised at sample 9740.



1774 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 23, NO. 5, OCTOBER 2015

Fig. 12. Course of the correlation coefficient and variances.

Therefore, the variance procedure is switched OFF at sample
9840.

Both procedures successfully detected the signal offset caused
by the manual calibration. However, we believe that the variance
procedure is easier to implement and to use since it has fewer
design and tuning parameters than the correlation procedure.

V. CONCLUSION

This paper has presented the possible construction of an FDS
for a WWTP. The obtained results on measured data gathered
from a real plant show that the evolving methods could be
successfully used in such systems. We believe that the control
of the WWTP could be greatly improved with the proposed
FDS. The obtained estimation results during the sensor failure
are reasonably accurate. With such a system, we could achieve
smooth functioning of the control, even if some of the sensors
drop out. The proposed approach can also be used on other types
of processes.

It was shown that a complex and time-varying relations be-
tween variables, such as found in the WWTP, can be modeled
with evolving methods and provide reasonable accuracy. How-
ever, there are still some issues that need our attention. One
of the objectives of our future work will certainly be the con-
struction of an additional algorithm for checking the faults on
the input signals (e.g., for estimating the influent ammonia) as
they might also be faulty. This algorithm should also work in
an online manner. The disadvantage of the presented approach
is that it is not capable of detecting the faults if the measured
signals are within the calculated bounds. Therefore, it should be
combined with approaches that track the statistical properties of
the signal. We also believe that some additional research efforts
will have to be made before connecting the proposed system in
the real closed loop.

Regarding the evolving method, there is the problem of tun-
ing. The evolving methods usually have a number of parameters

that need to be tuned properly in order to achieve good mod-
els. This procedure can be time consuming, at least for the
nonexpert.
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[48] D. Dovžan, V. Logar, and I. Škrjanc, “Solving the sales prediction prob-
lem with fuzzy evolving methods,” in Proc. IEEE Congr. Evolutionary
Comput., Brisbane, Australia, Jun. 2012, pp. 1–8.

[49] O. Nelles, “Local linear model tree for on-line identification of time invari-
ant nonlinear dynamic systems,” in Proc. Int. Conf. Artif. Neural Netw.,
Bochum, Germany, 1996, pp. 115–120.
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